NOTE

The Calculation of Cubic Harmonics ${ }^{1}$

1 It is often necessary to use linear combinations

$$
\begin{equation*}
|\gamma i\rangle=\sum_{m=-l}^{l} a^{l v i} m Y^{l} m(\theta \phi) \tag{1.1}
\end{equation*}
$$

of spherical harmonics $Y^{l} m(\theta \phi)$ which transform according to an irreducible representation γ of a finite subgroup of $R 3$ (e.g., the cubic group) [1] in molecular and solid-state calculations.

The classical methods for obtaining the coefficients $a^{l y i} m$ are clumsy and inconvenient [2], [3], particularly for large l values. Recent work by Mueller and others [4], [5] has made it desirable to calculate these coefficients for l values up to at least 100 in the case of the cubic group.

In this paper we discuss a group theoretical extension of the familiar recursion formula for associated Legendre Polynomials [6] to cubic harmonics.
2. Although the recursion relation [6] for the $P_{n}{ }^{m}$ is usually obtained by the methods of classical analysis, it is simply an expression of the reduction of the Kronecker product of two irreducible representations of the rotation group

$$
\mathscr{D}_{l-1} \times \mathscr{D}_{1}=\mathscr{D}_{l}+\mathscr{D}_{l-1}+\mathscr{D}_{l-2},
$$

or in terms of basis functions

$$
\begin{equation*}
|l, m\rangle=\sum_{m^{\prime} m^{*}}\left|l-1, m^{\prime}\right\rangle\left|1, m^{\prime \prime}\right\rangle\left\langle l-1, m^{\prime} ; 1, m^{\prime \prime} \mid l m\right\rangle \tag{2.1}
\end{equation*}
$$

and this relation may be used to calculate $Y^{l} m(\theta \phi)$ from $Y^{l-1} m^{\prime}(\theta \phi)$ and $Y^{1} m^{\prime \prime}(\theta \phi)$.
An analogous device may be used to calculate polynomials of degree n in (x, y, z) from polynomials of degree $n-1$ in (x, y, z) and (x, y, z) for irreducible representations of the cubic group

$$
\begin{equation*}
|n \gamma i\rangle=\sum_{i^{\prime} i^{* \prime}}\left|n-1 ; \gamma^{\prime} i^{\prime}\right\rangle\left|1, \gamma^{\prime \prime} i^{\prime \prime}\right\rangle\left\langle\gamma^{\prime} i^{\prime} ; \gamma^{\prime \prime} i^{\prime \prime} \mid \gamma^{i}\right\rangle \tag{2.2}
\end{equation*}
$$

[^0]since (x, y, z) span the representation Γ_{4} of the cubic group, and the cubic Wigner coefficients $\left\langle\gamma^{\prime} i^{\prime} ; \gamma^{\prime \prime} i^{\prime \prime} \mid \gamma i\right\rangle$ are tabulated [7]. Although (2.2) can be used to generate sets of homogeneous polynomials of degree n in (x, y, z) which span the space of all homogeneous polynomials of degree n in (x, y, z) and transform according to irreducible representations of the cubic group, they are not all spherical harmonics of order n (e.g., $\left(x^{2}+y^{2}+z^{2}\right)^{2}$ is homogeneous of degree 4 but is $r^{4} P o$).

However, to select out the spherical harmonics of order n, it is necessary only to apply the projection operator

$$
\begin{equation*}
I(n)=\sum_{m=-n}^{n}|n m\rangle\langle n m| . \tag{2.3}
\end{equation*}
$$

3. Let $|n p \alpha i\rangle$ be the i th vector of the p th occurrence of the representation Γ^{α}, and let $|n m\rangle$ be the m th vector of the representation $D n$ of the full rotation group so that

$$
\begin{equation*}
|n p \alpha i\rangle=\sum_{m=-n}^{n}|n m\rangle\langle n m \mid n p \alpha i\rangle \tag{3.1}
\end{equation*}
$$

we require the coefficients $\langle n m \mid n p \alpha i\rangle$.
For the Fermi-surface determination of Mueller [4], [5] we need only even n values. The coefficients $\langle 2 m \mid 2 \gamma k\rangle$ are tabulated by Koster et al. [7].

We will show how to obtain the coefficients $\langle n m \mid n p a i\rangle$ from the coefficients $\left\langle n-2, m^{\prime} \mid n-2, q \beta j\right\rangle$

$$
\begin{align*}
|n-2 q \beta j\rangle & =\sum_{m^{\prime}}\left|n \quad 2 m^{\prime}\right\rangle\left\langle n-2 m^{\prime} \mid n-2 q \beta j\right\rangle, \tag{3.2}\\
|p \alpha i\rangle & =\sum_{j,<}|2 \gamma k\rangle|n-2 q \beta j\rangle\langle\gamma k ; \beta j \mid p \alpha i\rangle, \tag{3.3}\\
& =\sum_{m^{\prime} m^{*} j k}\left|2 m^{\prime \prime}\right\rangle\left|n-2 m^{\prime}\right\rangle\left\langle 2 m^{\prime \prime} \mid 2 \gamma k\right\rangle\left\langle n-2 m^{\prime} \mid q \beta j\right\rangle\langle\gamma k ; \beta j \mid \alpha i\rangle . \tag{3.4}
\end{align*}
$$

But

$$
\begin{equation*}
\left|2 m^{\prime \prime}\right\rangle\left|n-2 m^{\prime}\right\rangle=\sum_{N M}|N M\rangle\left\langle N M \mid 2 m^{\prime \prime} ; n-2 m^{\prime}\right\rangle \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
|p \alpha i\rangle=\sum_{N M m^{*} m^{\prime} ; k}|N M\rangle\left\langle 2 m^{\prime \prime} \mid 2 \gamma k\right\rangle\left\langle n-2 m^{\prime} \mid q \beta j\right\rangle\langle\gamma k ; \beta j \mid \alpha i\rangle . \tag{3.6}
\end{equation*}
$$

Terms with the same N in (3.6) transform among themselves under the cubic group since the $|N M\rangle, M=-N$ to N afford a representation of the full rotation group. Therefore, the terms with $N=n$ in (3.6) are $|n p \alpha i\rangle$; i.e.,

$$
\begin{equation*}
\langle n m \mid n p \alpha i\rangle=\sum_{m^{\prime} m^{\prime} j k}\left\langle 2 m^{\prime \prime} \mid 2 \gamma k\right\rangle\left\langle n-2 m^{\prime} \mid q \beta j\right\rangle\langle\gamma k ; \beta j \mid \alpha i\rangle\langle n m| 2 m^{\prime \prime} ; n-\underset{\text { (3.7) }}{\left.2 m^{\prime}\right\rangle .} \tag{3.7}
\end{equation*}
$$

Equation (3.7) is deceptively simple. There are two pitfalls to beware of. One is the labeling by the variable p. It does not appear in the Wigner coefficients $\langle\beta j \gamma k \mid \alpha i\rangle$, and yet it springs from nowhere on the left-hand side (3.6) and (3.7). If there is only one occurrence of Γ^{α} in $\Gamma^{\beta} \times \Gamma^{\alpha}$, then p is simply a label that reflects the fact that a given representation may be accessible in more than one way and may occur more than once. When the task of programming is commenced and all the representations that belong with a given n and α are written as a sequential data set, p merely becomes the sequence number of the representation in that data set.

A related problem is that not all the representations obtained by use of (3.7) are necessarily linearly independent. Thus when a new representation $|p \alpha i\rangle$ $i=1 \cdots n \alpha$ has been obtained, it must be checked for linear independence from all those already in the data set before p is incremented by one and it is added to the set.
4. A prototype program has been written in PL/1 and run on an IBM O/S 360 Model 50, making extensive use of 2311 disk and stream I/O for intermediate storage. It took about 27 minutes to reach $n=24$.

The program is now being rewritten to run under ASP on a $36075 / 50$ configuration, using record I/O and extensive I/O overlap with CPU processing. It is expected that this program will reach $M=100$ before rounding errors become significant or CPU time becomes embarrassingly long.

When this new program is running and debugged, we will be willing to distribute tapes carrying the coefficients $\langle n m \mid n p \alpha i\rangle$ to interested parties. Inquiries should be addressed to the author of this paper.

References

1. D. F. Johnston, Group theory in solid state physics. Repts Progr. Phys. 23 (1960).
2. J. R. Gabriel, J. Math. Phys. 5, 494 (1964).
3. J. R. Gabriel, J. Chem. Phys. 43, S265 (1965).
4. F. Mueller, Phys. Rev. 148, pp. 636 (1966).
5. F. Mueller and A. M. Priestley, Phys. Rev. 148, 638 (1966).
6. M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions," p. 333, Section 8.5. National Bureau of Standards, Washington, D.C. (1964).
7. G. K. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, "Properties of the Thirty-two Point Groups." Technology Press, MIT, Cambridge, Massachusetts (1963).
J. R. Gabriel

Argonne National Laboratory
Argonne, Illinois

[^0]: ${ }^{1}$ Work performed under the auspices of the U.S. Atomic Energy Commission.

